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Application and Methodology

I Application
I Graph partitioning or data clustering

I Methodology

I Spectral methods based on modularity components or
principal components

I Relation between dominant eigenvectors of
unnormalized modularity and similarity matrices

I Comparing modularity components and principal
components
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Definitions

I Given a graph or data, we have:

I Modularity matrix: B = A− ddT/(2m)

I A is an adjacency matrix (graph) or similarity matrix
(data)

I d = Ae is the degree vector

I m = dTe is the number of edges in the graph
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Definitions

I Modularity: Q(s) = sTBs

I Invented by Newman and Girvan (2004)

I Goal: Pick s, ‖s‖2 = 1 s.t. Q is maximized

I Dominant eigenvector of B maximizes Q
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Properties

I Modularity matrix B

I Symmetric, not semi-definite

I (0, e) is an eigenpair of B

I The eigenvector corresp. to the largest eigenvalue is
used in partitioning

I Spectral clustering uses the eigenvector corresp. to the
second smallest eigenvector of L = D− A
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Dominant Eigenvectors of Modularity and Similarity
Matrices

I Modularity matrix: B = A− ddT/(2m)

I We want to give an explicit expression of b1 in terms of
eigenvalues and eigenvectors of A.

Theorem 1

The dominant eigenvector of B is b1 = 1
‖d‖2

∑n
i=1

vTi d
αi−β1

vi .

I (αi , vi)’s are eigenpairs of A

I The proof is based on Cauchy’s Interlacing Theorem.
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Dominant Eigenvectors of B when A = XTX

I Suppose Xp×n = UΣVT is the uncentered data matrix

I Consider a special case: A = XTX

I Suppose A has k positive eigenvalues and they are simple

I The first k − 1 largest eigenvalues of B are simple by the
interlacing theorem

I The result in theorem 1 can be extended
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Dominant Eigenvectors of B when A = XTX

Theorem 2

Suppose the largest k − 1 eigenvalues of B are
β1 > β2 > · · · > βk−1 and the nonzero eigenvalues of A = XTX
are α1 > α2 > · · · > αk . Further suppose that for 1 ≤ i ≤ k − 1
we have βi 6= αi and βi 6= αi+1. Then the k − 1 dominant
eigenvectors of B can be written by

bi =
k∑

j=1

γijvj ,

where

γij =
vTj d

(αj − βi )‖d‖2
.
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Application: Modularity Components

Definition

Let

mT
i = bT

i X† =
k∑

j=1

γij
σj

uT
j ,

then the i-th modularity component is defined to be

ci =
mi

‖mi‖2
.

I σj is the j-th singular value of X, uj corresp. singular
vector

I Can help to explain why using several eigenvectors of B to
cluster data is reasonable
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Review: Properties of Principal Components

I Principal Components derived from X are orthogonal to
each other

I Require centering data

I Projection of the centered data onto to the span of
principal components gives clusters

I The first principal component has maximal variance

I Each succeeding principal component has maximal
variance with the constraint that it is orthogonal to all
prior principal components
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Properties of Modularity Components

I Modularity Components derived from X are orthogonal to
each other

I Does not require centering

I Projection of the uncentered data onto to the span of
modularity components gives clusters

I The first modularity component has maximal modularity

I Each succeeding modularity component has maximal
modularity with the constraint that it is orthogonal to all
prior modularity components
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Significance of Modularity Components

I Analogous to the principal components

I Does not require centering

I Gives reason to use multiple eigenvectors of B to cluster
data
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Example: PenDigit Dataset (Subset of MNIST)

I ∼12,000 data points

I Data points: vectors converted from a grey scale image

I Subset used: Digits 1, 5 and 7
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Conclusion

I The exact linear relation between the dominant
eigenvectors of B in terms of the eigenvectors of A is
given

I The definition of modularity components and their
properties are given

I The comparison between modularity components and
principal components is given

I An example comparing the results from MCA and PCA is
given
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Thanks

Thank you! Questions and Answers
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