Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis

Hansi Jiang
Carl Meyer
North Carolina State University

October 27, 2015

Application and Methodology

- Application
- Graph partitioning or data clustering
- Methodology
- Spectral methods based on modularity components or principal components
- Relation between dominant eigenvectors of unnormalized modularity and similarity matrices
- Comparing modularity components and principal components

Definitions

- Given a graph or data, we have:
- Modularity matrix: $\mathbf{B}=\mathbf{A}-\mathbf{d d}^{T} /(2 m)$
- A is an adjacency matrix (graph) or similarity matrix (data)
- $\mathbf{d}=\mathbf{A e}$ is the degree vector
- $m=\mathbf{d}^{T} \mathbf{e}$ is the number of edges in the graph

Definitions

- Modularity: $Q(\mathbf{s})=\mathbf{s}^{T} \mathbf{B s}$
- Invented by Newman and Girvan (2004)
- Goal: Pick s, $\|\mathbf{s}\|_{2}=1$ s.t. Q is maximized
- Dominant eigenvector of \mathbf{B} maximizes Q

Properties

- Modularity matrix B
- Symmetric, not semi-definite
- $(0, \mathbf{e})$ is an eigenpair of \mathbf{B}
- The eigenvector corresp. to the largest eigenvalue is used in partitioning
- Spectral clustering uses the eigenvector corresp. to the second smallest eigenvector of $\mathbf{L}=\mathbf{D}-\mathbf{A}$

Dominant Eigenvectors of Modularity and Similarity Matrices

- Modularity matrix: $\mathbf{B}=\mathbf{A}-\mathbf{d d}^{T} /(2 m)$
- We want to give an explicit expression of \mathbf{b}_{1} in terms of eigenvalues and eigenvectors of \mathbf{A}.

Theorem 1
The dominant eigenvector of \mathbf{B} is $\mathbf{b}_{1}=\frac{1}{\|\mathbf{d}\|_{2}} \sum_{i=1}^{n} \frac{\mathbf{v}_{\mathbf{i}}^{T} \mathbf{d}}{\alpha_{i}-\beta_{1}} \mathbf{v}_{i}$.

- $\left(\alpha_{i}, \mathbf{v}_{i}\right)$'s are eigenpairs of \mathbf{A}
- The proof is based on Cauchy's Interlacing Theorem.

Dominant Eigenvectors of \mathbf{B} when $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$

- Suppose $\mathbf{X}_{p \times n}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$ is the uncentered data matrix
- Consider a special case: $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$
- Suppose \mathbf{A} has k positive eigenvalues and they are simple
- The first $k-1$ largest eigenvalues of \mathbf{B} are simple by the interlacing theorem
- The result in theorem 1 can be extended

Dominant Eigenvectors of \mathbf{B} when $\mathbf{A}=\mathbf{X}^{\top} \mathbf{X}$

Theorem 2

Suppose the largest $k-1$ eigenvalues of \mathbf{B} are
$\beta_{1}>\beta_{2}>\cdots>\beta_{k-1}$ and the nonzero eigenvalues of $\mathbf{A}=\mathbf{X}^{T} \mathbf{X}$ are $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{k}$. Further suppose that for $1 \leq i \leq k-1$ we have $\beta_{i} \neq \alpha_{i}$ and $\beta_{i} \neq \alpha_{i+1}$. Then the $k-1$ dominant eigenvectors of \mathbf{B} can be written by

$$
\mathbf{b}_{i}=\sum_{j=1}^{k} \gamma_{i j} \mathbf{v}_{j}
$$

where

$$
\gamma_{i j}=\frac{\mathbf{v}_{j}^{T} \mathbf{d}}{\left(\alpha_{j}-\beta_{i}\right)\|\mathbf{d}\|_{2}} .
$$

Application: Modularity Components

Definition

Let

$$
\mathbf{m}_{i}^{T}=\mathbf{b}_{i}^{T} \mathbf{X}^{\dagger}=\sum_{j=1}^{k} \frac{\gamma_{i j}}{\sigma_{j}} \mathbf{u}_{j}^{T}
$$

then the i-th modularity component is defined to be

$$
\mathbf{c}_{i}=\frac{\mathbf{m}_{i}}{\left\|\mathbf{m}_{i}\right\|_{2}}
$$

- σ_{j} is the j-th singular value of $\mathbf{X}, \mathbf{u}_{j}$ corresp. singular vector
- Can help to explain why using several eigenvectors of \mathbf{B} to cluster data is reasonable

Review: Properties of Principal Components

- Principal Components derived from \mathbf{X} are orthogonal to each other
- Require centering data
- Projection of the centered data onto to the span of principal components gives clusters
- The first principal component has maximal variance
- Each succeeding principal component has maximal variance with the constraint that it is orthogonal to all prior principal components

Properties of Modularity Components

- Modularity Components derived from \mathbf{X} are orthogonal to each other
- Does not require centering
- Projection of the uncentered data onto to the span of modularity components gives clusters
- The first modularity component has maximal modularity
- Each succeeding modularity component has maximal modularity with the constraint that it is orthogonal to all prior modularity components

Significance of Modularity Components

- Analogous to the principal components
- Does not require centering
- Gives reason to use multiple eigenvectors of \mathbf{B} to cluster data

Example: PenDigit Dataset (Subset of MNIST)

- $\sim 12,000$ data points
- Data points: vectors converted from a grey scale image
- Subset used: Digits 1, 5 and 7

	MCA Result		
	1	5	7
1	4487	196	1
5	203	3526	66
7	870	101	3430

Table 1: MCA Result on PenDigit Data

	PCA Result		
	1	5	7
1	4480	203	1
5	429	3290	76
7	787	112	3502

Table 2: PCA Result on PenDigit Data

Conclusion

- The exact linear relation between the dominant eigenvectors of \mathbf{B} in terms of the eigenvectors of \mathbf{A} is given
- The definition of modularity components and their properties are given
- The comparison between modularity components and principal components is given
- An example comparing the results from MCA and PCA is given

Thanks

Thank you! Questions and Answers
[1] Hansi Jiang and Carl Meyer.
Modularity component analysis versus principal component analysis.
submitted(http://arxiv.org/pdf/1510.05492v1.pdf), 2015.
[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998.
[3] Mark EJ Newman and Michelle Girvan.
Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.
[4] Ulrike Von Luxburg.
A tutorial on spectral clustering.
Statistics and computing, 17(4):395-416, 2007.

